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Abstract

Since Heal (1982), there is a theoretical consensus about the occurrence

of limit cycles (through a Hopf bifurcation) under a positive effect of

pollution on consumption demand (compensation effect) and about the

impossibility under a negative effect (distaste effect). However, recent

empirical evidence advocates for the relevance of distaste effects.

Our paper challenges the conventional view on the theoretical ground

and reconciles theory and evidence. The Environmental Kuznets Curve

(pollution first increases in the capital level then decreases) plays the

main role. Indeed, the standard case à la Heal (limit cycles only under a

compensation effect) only works along the upward-sloping branch of the

curve while the opposite (limit cycles only under a distaste effect) holds

along the downward-sloping branch.

Welfare effects of taxation also change according to the slope of the

EKC.

JEL Classification: E32, O44.

1 Introduction

Human activities pollute and pollution affects them in turn. Theorists have

considered the pollution effects on production and, to a lesser extent, on pref-

erences. In particular, they have focused on consequences on consumption de-

mand. However, as shown by Michel and Rotillon (1995), the pollution effect

on this demand remains ambiguous from a theoretical point of view. More pre-

cisely, on the one hand, pollution promotes consumption demand through what

they call a compensation effect (households consume more to compensate the

utility loss due to a higher pollution). On the other hand, if household likes to

consume in a pleasant environment, a rise in the pollution level reduces the con-

sumption demand (Michel and Rotillon call this phenomenon distaste effect).

In a seminal paper, Heal (1982) highlighted the saddle-path stability of an en-

vironmental Ramsey economy under a distaste effect while the occurrence of a
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limit cycle through a Hopf bifurcation under a sufficiently large compensation

effect. Since, different papers have pointed out these results as a robust feature

of Ramsey models with pollution effects on preferences.

To the best of our knowledge, there are no papers with empirical evidence

about the direct effects of pollution on consumption demand. Nevertheless, in

a recent contribution, Finkelstein et al. (2013) have shown that a poorer health

leads to a lower marginal utility of consumption. Indirectly, such a complemen-

tarity between health and consumption says something about the pollution ef-

fects on consumption demand. Indeed, medical research has largely documented

the negative pollution effect on human health.1 Thus, a higher pollution level

lowers health which lowers consumption demand in turn. Therefore, the empiri-

cal evidence provided by Finkelstein et al. (2013) seems to confirm the existence

of a distaste effect which casts some doubts on the plausibility of endogenous

cycles pointed out by Heal (1982).

Intuitively, endogenous limit cycles appear in Heal (1982) because a higher

pollution increases the consumption demand (compensation effect) and decreases

saving and capital accumulation. Under a sufficiently large compensation effect,

the capital stock lowers entailing a drop in future pollution at the end. Hence,

a rise in pollution today implies a drop in pollution tomorrow and an endoge-

nous fluctuation. Thus, a compensation effect promotes (limit) cycles because

of a positive relation between capital and pollution. Heal’s results rest on this

monotonicity. In order to reconcile the empirically evidence (distaste effect)

with the possibility of limit cycles, we have to go beyond Heal’s argument and,

clearly, to renounce to monotonicity.

Fortunately, monotonicity does not seem to fit the evidence. The Envi-

ronmental Kuznets Curve (EKC) literature points out that, beyond a critical

capital level, the relation between capital and pollution is no longer positive but

negative.2 A negative relation seems to rule out the occurrence of endogenous

cycles under a compensation effect, but to promote them under a distaste ef-

fect. Our paper aims at providing a theoretical framework based on the ECK

to overturn Heal’s conclusion while fitting the evidence.

According to Kijima et al. (2010), four arguments provide a rationale for the

EKC. (1) EKC accounts for an historical economic process: first, the industri-

alization (from a clean agriculture to a dirty industry); then, the tertiarization

(from a dirty industry to clean services). (2) Internalizing pollution externalities

requires advanced institutions that exist only in mature economies. (3) There

exists a threshold beyond which abatement becomes profitable. (4) Abatement

activities exhibit increasing returns.3

According to Fernandez et al. (2012), EKC makes local indeterminacy and

endogenous fluctuations less demanding. These authors develop a continuous-

time Ramsey economy with endogenous labor supply and show that conditions

1The reader is referred to a brief survey on the pollution effects on human health by Kampa

and Castanas (2008).
2The reader is referred to a survey on the EKC compiled by Kijima et al. (2010).
3Andreoni and Levinson (2001), and, more recently, Managi (2006) and Managi and Kaneko

(2009) have found an empirical evidence of increasing returns to scale for abatment activities.
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for equilibrium indeterminacy are compatible with the existence of an EKC.

Taking in account facts and criticisms, we build a simple continuous-time

Ramsey economy where a pollution externality, coming from capital accumula-

tion, affects the marginal utility of consumption. We introduce a government

which levies a proportional tax on capital utilization at the firm level to finance

depollution expenditures. As seen above, to fit evidence, we assume that de-

pollution efficiency increases in the abatement effort (Andreoni and Levinson

(2001) among the others).

Our standard assumptions on preferences and technology ensure the exis-

tence of a unique positive steady state. The introduction of increasing depollu-

tion efficiency leads to the existence of an EKC at the steady state.

We show that, in the long run, a pollution tax is never welfare-improving

when the economy is located on the downward-sloping branch of the EKC.

We prove that, in the short run, along the same branch of the EKC, limit

cycles (through a Hopf bifurcation) arise if and only if preferences exhibit a

distaste effect. To the best of our knowledge, our model is the first attempt to

present the distaste effect as a source of macroeconomic volatility. The existence

of empirically grounded distaste effects is no longer a sufficient argument to rule

out the occurrence of limit cycles.

The rest of the paper is organized as follows: we present the model (Sections

2 to 5), we study the equilibrium dynamics in the short and long run (Sections 6

to 11), we solve and simulate the isoelastic case (Section 12 and 13), we conclude

(Section 14). All the technical proofs are gathered in the Appendix (Section 15).

2 Firms

We consider a simple Ramsey economy with a pollution accumulation coming

from capital utilization. A government levies a carbon tax in order to finance

depollution expenditures according to a balanced budget rule. Depollution ef-

ficiency is endogenous and is characterized by increasing returns for abatement

activities.

A representative firm produces a single output. A constant returns to

scale technology is represented by an aggregate production function:  () =

 ( ()   ()), where  () and  () are the aggregate demands for capital

and labor at time . For notational parsimony, the time argument  will be

omitted in the following for any variable. Following Itaya (2008) and Fernandez

et al. (2012), any firm must pay a pollution tax  levied by a public authority

on physical capital.

Assumption 1 The production function  : R2+ → R+ is 1, homogeneous
of degree one, strictly increasing and concave. Standard Inada conditions hold.

Any firm chooses the amount of capital and labor to maximize the profit

taking as given the real interest rate  and the real wage . The program

max [ ()−  −  − ] is correctly defined under Assumption 1
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and the first-order conditions write:

 +  =  0 () ≡  () and  =  ()−  0 () ≡  () (1)

where  () ≡  ( 1) is the average productivity and  ≡  denotes the

capital intensity at time . We introduce the capital share in total income and

the elasticity of capital-labor substitution:

 () ≡  0 ()
 ()

and  () =  ()
 ()

0 ()

In addition, we determine the elasticities of factor prices:

0 ()
 ()

= −1−  ()

 ()
and

0 ()
 ()

=
 ()

 ()
(2)

3 Households

Any household earns a capital income  and a labor income  where  and

 denote the individual wealth and labor supply at time . For simplicity, we

assume also that the household supplies inelastically one unit:  = 1. Thus,

households consume and save their income according to the budget constraint

+ ̇ ≤ ( − )+  (3)

where ̇ denotes the time-derivative of wealth. The gross investment includes

the capital depreciation at the rate .

For the sake of simplicity, the population of consumers-workers is constant

over time and normalized to one:  = 1. Such a normalization implies  =

 =  = 1,  =  =  and  =  =  = .

In the following,  will denote the stock of pollution (aggregate externality).

Assumption 2 Preferences are rationalized by a non-separable utility func-

tion  (  ). First and second-order restrictions hold on the sign of derivatives:

  0,   0 and   0, jointly with the limit conditions: lim→0+  =∞
and lim→+∞  = 0.

Assumption 2 does not impose any restriction on the sign of the cross-

derivative  Q 0. Following Michel and Rotillon (1995), the household’s

preferences exhibit a distaste effect (compensation effect) when pollution de-

creases (increases) the marginal utility of consumption. If the households enjoy

to consume in a pleasant environment, a higher pollution level lowers their con-

sumption demand (  0) giving rise to a distaste effect (Michel and Rotil-

lon, 1995). Conversely, household could decide to increase their consumption

demand to compensate the utility loss due to a higher pollution level (  0),

generating a compensation effect (Michel and Rotillon, 1995).

According to Heal (1982), a sufficiently large compensation effect promotes

a limit cycle near the steady state of a simple environmental Ramsey economy,
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while saddle-path stability always prevails when preferences exhibit a distaste

effect. In a recent contribution, Finkelstein et al. (2013) provide some empiri-

cal evidence of complementarity between health and consumption. Combining

that with evidence of negative pollution effects on health (Kampa and Cas-

tanas, 2008), we can conclude that a distaste effect is more relevant than a

compensation effect. Following Heal’s theoretical approach casts doubts about

the plausibility of endogenous cycles. Our contribution aims at challenging this

conventional view by showing that Heal’s results (1982) fail when the economy

experiences an EKC at the steady state.

Let us introduce useful first and second-order elasticities

 ≡ 


and  ≡ 


(4)

 ≡ 


and  ≡ 


(5)

−1 is the usual consumption elasticity of intertemporal substitution
while  captures the effects of pollution on the marginal utility of consump-

tion. According to Assumption 1,   0. In terms of elasticity, the distaste

effect (compensation effect) writes   0 (  0).

In a Ramsey model, the representative household maximizes an intertempo-

ral utility functional
R∞
0

− (  )  under the budget constraint (3) where
  0 denotes the rate of time preference. This program is correctly defined

under Assumption 2.

Proposition 1 The first-order conditions of the consumer’s program are given

by a static relation

 =  (6)

a dynamic Euler equation ̇ =  (+  − ) and the budget constraint (3),

now binding, ̇ = ( − )  +  −  jointly with the transversality condition

lim→∞ − ()  () = 0.  denotes the multiplier associated to the budget

constraint.

Proof. See the Appendix.

4 Government

An environment-oriented government spends all the tax revenue to finance de-

pollution through an abatement effort (maintenance) according to a balanced

budget rule:

 =  (7)

Because of no population growth and inelastic labor supply,  = 1 and

budget (7) writes in intensive terms  = .
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5 Pollution

The aggregate stock of pollution  is a pure externality coming from the ag-

gregate capital stock used to produce (). In addition, the government takes

care of depollution through the abatement expenditures . To take things as

simple as possible, we assume a linear process:

̇ = − +  −  (8)

 ≥ 0,  ≥ 0 and  > 0 capture respectively the natural rate of pollution ab-
sorption, the environmental impact of production and the pollution abatement

efficiency. Because  = 1, the process of pollution accumulation (8) writes in

intensive terms: ̇ = − +  − .

We assume that the abatement efficiency  also depends on the effort  and

that  ≡  () is a derivable non-decreasing function. From a theoretical point

of view, two cases matter: constant  or increasing .

Assumption 3.0  ≥ 0 is a constant.
Assumption 3.1  : R+ → R+ is a 1 increasing function: 0 ()  0 for

every  ≥ 0.
The second case is more justified on the empirical ground: according to An-

dreoni and Levinson (2001), Managi (2006) and Managi and Kaneko (2009),

abatement technology  () exhibits increasing returns with respect to the

abatement effort . Thus, abatement efficiency  () increases as depollution

expenditures rise. According to Andreoni and Levinson (2001), abatement ac-

tivities are enhanced by a learning-by-doing process.

In the following, the elasticity of abatement efficiency will play a role:

 () ≡ 0 ()
 ()

  0 captures the sensitivity of abatement efficiency with respect to main-

tenance.

6 Equilibrium

At equilibrium, all markets clear. Applying the Implicit Function Theorem on

the static relation (6), we obtain the consumption demand  =  (  ) as a

function of multiplier and pollution stock with elasticities:








=

1


 0 and








= −



We observe that the first elasticity is just the negative of the consumption

elasticity of intertemporal substitution while the second one captures the dis-

taste/compensation effects. More precisely, when preferences exhibits a distaste

effect (compensation effect), then   0 (  0).
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Proposition 2 Equilibrium dynamics are represented by the following system:

̇ = 1 (   ) ≡ [+  +  − ()] (9)

̇ = 2 (   ) ≡ [ ()− ( + )]  +  ()−  (  ) (10)

̇ = 3 (   ) ≡ − +  −  ()  (11)

Proof. Simply consider equations (1) and Proposition 1.

The dynamic system formed by equations (9) to (11) possesses one forward

(jump) variable () and two backward (state) variables ( and  ).

7 Steady state and EKC

In the following, we highlight a non-monotonic relation between capital and

pollution at the steady state. The turning point is a critical capital intensity:

̃ ≡ 1


−1

µ


 (1 + )

¶
 0

The existence of an EKC rests on the invertibility of  ensured by an in-

creasing abatement efficiency.

Proposition 3 (environmental Kuznets curve) Under Assumption 3.1, at the

steady state,  (∗) is an inverted-U-shaped function of ∗ with  0 (∗)  0 if

and only if ∗  ̃.

Proof. See the Appendix.

The capital elasticity of pollution is given by:

 =  () ≡  0 ()
 ()

(12)

with, at the steady state,

 (∗) =
− ∗ (1 + )

− ∗
(13)

Clearly, ∗  ̃ implies  (∗)  0 while ∗  ̃ implies  (∗)  0. In other

terms, there exists an inverted-U-shaped relation between the cause (capital)

and the effect (pollution), that is an EKC.

The decreasing branch of the EKC means that a wealthier economy becomes

also a cleaner one. Nevertheless, an economy could not converge to a steady

state exhibiting a negative relation between capital and pollution but, instead,

to a more complex attractor (a supercritical limit cycle). Thus, as we will show

in the next section, the relation between capital and pollution could become

cyclical around a steady state on the decreasing branch of the EKC.

Proposition 4 (Steady state existence and uniqueness) There exists a unique

positive steady state.
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Proof. See the Appendix.

Proposition 4 points out that, no matter whether pollution affects negatively

or positively the consumption demand and abatement activities increase depol-

lution efficiency, the existence and the uniqueness of the steady state are always

ensured.

A simple exercise of comparative statics allows us to connect the effects of

taxation on the steady state and the EKC.

Differentiating

 (∗) = +  +  (14)

gives the effect of  on ∗. More explicitly, using (2), we find



∗
∗


= − 

1− 



+  + 
 0 (15)

Thus, unsurprisingly, the higher the tax rate () on the physical capital, the

lower the capital stock of steady state. The final impact on pollution depends

on the EKC.

Proposition 5 The qualitative impacts of  on  ∗ are given by
(1)  ∗  0 if   ̃,

(2)  ∗  0 if   ̃.

Proof. Considering (29) gives:



 ∗
 ∗


=  (∗)



∗
∗


(16)

Proposition 5 shows that, when the economy lies on the decreasing branch

of the EKC (  ̃), a higher green tax increases the pollution stock. Indeed,

inequality (15) implies that a higher tax rate lowers the capital stock which in-

creases in turn the pollution level (negative EKC effect). Such counter-intuitive

effect of pollution tax looks like the one called Green Paradox (Sinn, 2008).

Therefore, pollution taxes are not always the right way to clean the environ-

ment.

Using (33) and (2), we obtain



∗
∗


=

+ (+  + ) 1−


+ (+  + ) 1−




∗
∗


 0 (17)

Even if the effect of taxation on consumption demand is always negative, the

effect on welfare is ambiguous. More precisely, we have the following proposition.

Proposition 6 Under Assumptions 1 and 2, if   0, the impact of taxation

on welfare is positive if and only if

 (∗)  − ∗
∗

+ (+  + ) 1−


+ (+  + ) 1−


( 0) (18)

where ∗
∗
  0. In particular, on the downward-sloping branch of the EKC,

 (∗)  0 and, therefore, the impact of taxation on welfare is negative.
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Proof. See the Appendix.

Proposition 6 deserves an interpretation. Assume first that the steady state

lies on the upward-sloping branch of EKC. A higher pollution tax leads (1) to

a lower capital level (see 15) which entails a lower pollution level ( (∗)  0)

and a higher utility in turn (Assumption 2), and (2) to lower consumption level

(17) and utility at the end (Assumption 2). Hence, the effect of pollution tax

on household’s utility is ambiguous. According to Proposition 6, the positive

effect (1) dominates the negative one (2) if and only if the slope of EKC is very

positive (see condition (18)). In this respect, the decrease of consumption de-

mand entailed by a higher tax rate is largely dominated by the drop in pollution.

In other terms, when the slope of the EKC is very positive, a higher pollution

tax implies a utility gain from pollution drop much larger than the utility loss

from consumption decrease: the pollution tax turns out to be welfare-improving.

Conversely, when the slope of the EKC is not too positive, condition (18) fails

and the negative effect (2) dominates the positive one (1) because a higher pol-

lution tax results in a drop in capital larger than in pollution. We observe that

the slope of EKC is very positive if ∗ is very close to the origin in the (  )-
plane: thereby, a pollution tax is more likely welfare-improving in developing

countries than in a developed ones.

Now, assume that the steady state lies on the downward-sloping branch of

EKC. Thus, a higher pollution tax results (1) in a lower capital level (see 15)

which entails a higher pollution level ( (∗)  0) and a lower utility in turn

(Assumption 2) and (2) in lower consumption level (17) and utility at the end

(Assumption 2). In this case, the ambiguity is dissipated because both the

effects are negative: a higher pollution tax lowers households’ utility and social

welfare when the economy experiences the negative slope of EKC.

8 Local dynamics

In the following, we are interested in short-run dynamics and fluctuations, and

we provide general conditions for local bifurcations and local indeterminacy in

the case of a three-dimensional system with two predetermined variables.

The local stability of a the steady state depends on the stability of the

eigenvalues of the Jacobian matrix. Computing the derivatives, we obtain a

three-dimensional Jacobian matrix:

 ≡
⎡⎣ 1


1


1


2


2


2


3


3


3


⎤⎦ =
⎡⎣ 0 (− ) 





0

− 





  



−

0 −  (1 + ) −

⎤⎦ (19)

where  =  (),  =  (),  =  (),  =  () and

 ≡ 


= + (+  + )

1− 



In this and the following sections, all the values are evaluated at the steady

state. For notational parsimony, we will omit the asterisk ∗.
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The determinant, the sum of minors of order two and the trace are given by:

 = − (− )







 0 (20)

 =
h
(− )




− 

i 


−  (21)

 = −  (22)

where  is given by (12).

9 Bifurcations

In continuous time, a local bifurcation generically arises when the real part of

an eigenvalue  () of the Jacobian matrix crosses zero in response to a change

in a parameter . Denoting by ∗ the critical parameter value of bifurcation, we
get generically two cases: (1) when a real eigenvalue crosses zero:  (∗) = 0,

the system undergoes a saddle-node bifurcation (either an elementary saddle-

node or a transcritical or a pitchfork bifurcation depending on the number of

steady states), (2) when the real part of two complex and conjugate eigenvalues

 () =  () ±  () crosses zero, the system undergoes a Hopf bifurcation.

More precisely, in the second case, we require  (∗) = 0 and  () 6= 0 in a

neighborhood of ∗ (see Bosi and Ragot, 2011, p. 76).
The occurrence of a saddle-node bifurcation (elementary saddle-node, tran-

scritical, pitchfork) requires a multiplicity of steady states. In our model, the

steady state is unique (Proposition 4). Thus, we leave aside the theory of ele-

mentary saddle-node bifurcations to focus exclusively on the general theory of

Hopf bifurcations in the case of three-dimensional dynamic systems and on the

occurrence of limit cycles.

We eventually observe that system (9-11) is three-dimensional with two pre-

determined variables ( and  ) and one jump variable (). Thus, multiple

equilibria (local indeterminacy) arise when the three eigenvalues of the Jaco-

bian matrix (19) evaluated at the steady state have negative real parts: either

1 2 3  0 or Re1Re2  0 and 3  0.

10 Hopf bifurcation

This bifurcation generates limit cycles either attractive (supercritical) or repul-

sive (subcritical).

Reconsider the Jacobian matrix  and its determinant, sum of minors of

order two and trace:  = 123,  = 12+13+23 and  = 1+2+3.

A Hopf bifurcation occurs when the real part of two complex and conjugate

eigenvalues  () =  ()± () crosses zero. More precisely, we require  (∗) =
0 and  () 6= 0 in a neighborhood of ∗ (see Bosi and Ragot, 2011, p. 76).
Proposition 7 (Hopf bifurcation) In the case of a three-dimensional system, a

Hopf bifurcation generically arises if and only if  =  and   0.
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Proof. See the Appendix.

11 Local determinacy

In our economy, there are two predetermined variables ( and  ) and a jump

variable (). As seen above, indeterminacy requires three eigenvalues with neg-

ative real parts: either 1 2 3  0 or Re1Re2  0 and 3  0.

Proposition 8 If all the eigenvalues are real, the equilibrium is locally indeter-

minate if and only if   0 and   0.

Proof. See the Appendix.

Corollary 9 (local determinacy) The equilibrium is locally unique.

Proof. Consider inequality (20) and apply Proposition 8.

Corollary 9 implies that, when a Hopf bifurcation occurs, from a saddle-point

(with a two-dimensional stable manifold) the steady state becomes a source sur-

rounded by a (supercritical) cycle on the central manifold and the new equilib-

rium remains unique and converges to the cycle. Then, there is no room for

stochastic fluctuations due to self-fulfilling expectations.

12 Isoelastic case

In order to provide more economic intuition for local bifurcations, we focus on

explicit but standard functional forms:

 () =  and  (  ) ≡ (
−)1−

1− 
(23)

with   0,   0 and  ∈ (0 1).
These functions are interesting because elasticities (4) and (5) write in terms

of fundamental parameters:  = 1−,  =  (− 1),  = −,  =  (− 1).
This case leads us to analyze either the distaste effect (namely   0 with

  1) or the compensation effect (namely   0 with   1). Because of the

Cobb-Douglas specification for production, we also have  = 1. The abatement

efficiency is also specified as isoelastic:

 () =  (24)

with  ≥ 0. Depollution efficiency simplifies to   0 when  = 0.

In this isoelastic context, the unique steady state (  )
∗
(Proposition 4)

becomes:
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∗ =
µ



+  + 

¶ 1
1−

(25)

 ∗ =
∗



h
−  (∗)

i
(26)

∗ = [∗ + (1− )∗]−  ∗(−1) (27)

We observe that the positivity of  ∗ requires the restriction   . More-

over, if   0, equation (26) explicitly gives the EKC of Proposition (3). The

maximization argument of EKC solves

 0 () =
1



h
−  (1 + ) ()


i
= 0 (28)

Thus, the isoelastic case allows us to compute also the turning point of EKC:

̃ =
1



∙


 (1 + )

¸ 1


Clearly, if   ̃, then    (1 + )  and  0 ()  0, while, if   ̃, then

   (1 + )  and  0 ()  0.
According to Proposition 6, welfare analysis holds under the restriction   0

or, equivalently,   1 (that is the empirically relevant distaste case). Inequality

(18) applies and the impact of taxation on welfare is positive if and only if

 (∗) 
1



+ (+  + ) 1−


+ (+  + ) 1−


( 0)

Proposition 10 In the isoelastic case (expressions (23) and (24)), the deter-

minant, the sum of minors of order two and the trace write

 =  (− )



 0

 = −− [ (1− ) +  (− )]




 = − 

Proof. Consider (19) and replace the elasticities.

In the following, we focus the occurrence of Hopf bifurcation and we analyze

two main cases: the standard one ( = 0) corresponding to Assumption 3.0 and

the EKC case (  0) corresponding to Assumption 3.1.

A convenient Hopf bifurcation parameter is . The critical value of this

parameter is  ≡ 0 with

0 ≡ 

− 1
µ



+





− 

− 

¶
and  given by (12).
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We observe that neither 0 nor  depend on . Indeed, 0 depends on

the fundamental parameters, while  =  () depends on  which, according

to expression (25), does not depend on . Therefore, the critical value  is

well-defined. Clearly, when  = 0, we recover  = 0 because  = 1.

12.1 Standard case

We focus first on the case more considered in literature on endogenous fluc-

tuations: the pollution abatement efficiency does not depends on abatement

expenditures (namely  = 0). In this special case, there is no room for the

EKC.

The capital elasticity of pollution (12) simplifies to  () = 1 and ,  and

 to:

 =  (− )



 0

 = −− [ (1− ) +  (− )]




 = − 

The two following propositions study the occurrence of deterministic cycles

when preferences are characterized by a distaste effect or a compensation effect.

Proposition 11 Under a distaste effect (  1) there is no room for Hopf

bifurcations.

Proof.   1 implies   0. Thus, according to Proposition (7), any Hopf

bifurcation is generically ruled out.

Proposition 12 (Hopf bifurcation) Let   . Under a compensation effect

(  1), a limit cycle arises near the steady state through a Hopf bifurcation at

 = 0.

Proof. According to Proposition (7), a Hopf bifurcation generically occurs if

and only if  =  and   0.  = 0 is solution of  =  . In addition,

 = 0 implies   0 because   .

Propositions 11 and 12 recover the Heal’s main result (1982): endogenous

deterministic cycles may occur if and only if preferences are characterized by a

compensation effect (  1).

The existence of deterministic cycles is simply interpreted in terms of eco-

nomic concepts. Assume that the economy is at the steady state at time 

and assume an exogenous increase in the pollution stock. This environmental

degradation induces consumers to increase their consumption because of the

compensation effect and, then, to reduce their saving and capital which lowers

the next period pollution stock (equation (11)), and so on: deterministic cycles

arises.

However, Finkelstein et al. (2013) have pointed out complementarity be-

tween health and consumption while Kampa and Castanas (2008) the negative
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pollution effects on health. Thus, empirical evidence advocates for a negative ef-

fect of pollution on consumption demand: a higher pollution level worsens health

which reduces the consumption demand in turn. This empirically grounded dis-

taste effect casts some doubts on the plausibility of the occurrence of endogenous

cycles (Proposition 12).

The theoretical interpretation à la Heal (1982) provided above shows that

the occurrence of endogenous cycles rests on a positive relation between capital

and pollution, and rules them out under an (empirically relevant) distaste effect.

Along the negative slope of EKC capital has a negative effect on pollution:

intuition suggests that, in this case, endogenous cycles could become compatible

with a distaste effect. The next section aims at proving this conjecture.

12.2 EKC case

This section addresses the possibility of endogenous cycles when the economy

experiences an EKC at the steady state. The existence of an inverted-U-shaped

EKC requires   0. According to (13), ,  and  write

 =  (− )



 0

 = −−
∙
 (1− )

−  (1 + )

− 
+  (− )

¸




 = − 

One of the novelties of the paper is to consider the increasing abatement

efficiency (  0) jointly with a capital taxation (  0): this generate a U-

shaped EKC. Indeed, if  = 0, thus  0 ()  0 (Heal’s framework, 1982; see

(28)). Now,  0 ()  0 iff   ̃. In order to have   0 and  0  0, that is

  0, we assume
1

1 + 




  




(29)

Proposition 13 (Hopf bifurcation) Let    and   1 (distaste effect). If

(29) holds, a limit cycle generically occurs through a Hopf bifurcation at  = .

Proof. According to Proposition (7), a Hopf bifurcation generically occurs if

and only if  =  and   0.  =  is solution of  =  . In addition,

 =  implies   0 because   .

Notice that, under a Kuznets effect (negative slope of EKC), a distaste effect

is a necessary condition to observe a Hopf bifurcation. Indeed, a distaste effect

(  1) implies 0  0. Thus, a negative capital elasticity of pollution   0

entails a positive bifurcation value  ≡ 0.

As conjectured above, a negative relation between pollution and capital

(along the negative-sloped branch of EKC) preserves the scope for endogenous

cycles when pollution lowers consumption demand (distaste effect). This re-

sult is challenging because, to the best of our knowledge, for the first time, the

distaste effect (empirically grounded contrarily to the compensation effect) is
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pointed out as a potential source of endogenous fluctuations. Conversely, the

argument of compensation effect no longer works as a source of endogenous

cycles along the downward-sloping branch of EKC.

Even now, the existence of limit cycles under a distaste effect deserves an

interpretation. Assume that the economy is at the steady state at time . Con-

sider an exogenous increase in the pollution level. Under a distaste effect, house-

holds reduces their consumption demand while increasing savings. Along the

negative-sloped branch of EKC, the rise of capital intensity induced by savings,

lowers the next period pollution stock (and so on) giving rise to deterministic

(limit) cycles around the steady state.

13 Simulations

In this section, we provide computer simulations for the standard and the EKC

case presented above. In both the cases, we consider the following quarterly

calibration:

Parameter       

Value 1 033 0025 001 0008 0008 01
(30)

This calibration satisfies    (Proposition 13). To perform the simulations,

we use the Matcont package for Matlab.4

13.1 Standard case

In the standard case,  does not depend on pollution abatement ( = 0). We

set:

Parameter  

Value 006 4

The value for  ensures a compensation effect.  is set to keep ∗ low enough.5

Such a calibration implies 0 = 18 891.

Figure 1 represents all the stationary values of  when  ∈ (14 29). 

denotes the Hopf bifurcation values.

4Matcont version 5p4.
5Matcont is unable to implement a continuation exercise when ∗ is too high.
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Fig. 1 ∗ in the range (14 29) 3 

Following Matcont, a Hopf bifurcation occurs when  = 1889068 ≈ 0, the

steady state becomes:

(  )
∗
= (37964125 094910312 0038280808)

The corresponding eigenvalues are: 1 = 01603, 2 = −01603 and 3 =

0002. The first Lyapunov coefficient 1 = −3493719 ∗ 10−3 evaluated by Mat-
cont at the Hopf boundary is negative. Therefore, the bifurcation is supercritical

and the limit cycle is stable (Figure 2).
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Fig. 2 The stable limit cycle in the (   )-space

13.2 EKC case

Focus now on the case with   0 and   0. We complete the calibration table

(30) with

Parameter   

Value 05 3 1

 is now set to ensure a distaste effect while  and  to satisfy inequalities

(29). Figure 3 represents the EKC (see (26)).
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Fig. 3 The EKC in the (  )-plane

The new calibration determines  = 20591505 corresponding to the steady

state:

(  )
∗
= (3 796 4 1 199 8 0147 57)

We observe that the economy lies on the decreasing branch of EKC when

 =  (Figure 3). Figure 4 below done with Matcont represents the stationary

values of  when  ∈ (12 30). As above,  denotes Hopf bifurcation values.
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The corresponding eigenvalues are 1 = 0453396, 2 = −0453396 and
3 = 0002. The first Lyapunov coefficient 1 = −6738557 ∗ 10−3 evaluated
by Matcont at the Hopf boundary is negative. Therefore, the bifurcation is

supercritical and the limit cycle is stable (Figure 5).
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Fig. 5 The stable limit cycle in the (   )-plane

14 Conclusion

Departing from a recent empirical evidence on the existence of EKC (Managi

(2006) and Managi and Kaneko (2009)) and the negative effects of pollution

on consumption demand (Finkelstein et al. (2013) and Kampa and Castanas

(2008)), we have reconsidered the interplay between pollution, consumption

demand and the occurrence of endogenous cycles when the economy experiences

an EKC. As in Heal (1982), we show that, without EKC effects, a compensation

effect leads to persistent cycles through a Hopf bifurcation. Conversely, when

the economy lies on the negative-sloped branch of the EKC, limit cycles occurs

through a Hopf bifurcation only under distaste effects. Our paper reconciles

theory and evidence, the theoretical existence of endogenous fluctuations and

empirically relevant distaste effects under the empirically grounded assumption

of EKC.

15 Appendix

Proof of Proposition 1

The consumer’s Hamiltonian function writes

̃ ≡ − (  ) + ̃ [( − )+  − ]
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The first-order conditions are given by ̃̃ = ( − )+− = ̇, ̃ =

̃ ( − ) = −̃0, ̃ = − − ̃ = 0. Setting  ≡ ̃, we find ̇−  =

̃0 and, therefore,  ( −  − ) = −̇. Finally, the budget constraint ̇ =
( − )+  − , now binding, writes at equilibrium ̇ = ( − )  +  − .

Proof of Proposition 3

Focus on equation (11). ̇ = 0 implies

 =
∗


[−  (∗)  ] ≡  (∗) (31)

with

 0 (∗) =
1


[−  (1 + )  (∗)] (32)

Under Assumption 3.1, if ∗  ̃ then  0 ()  0 while if ∗  ̃ then

 0 (∗)  0.
Proof of Proposition 4

At the steady state, ̇ = ̇ = ̇ = 0. Equation (9) gives (14).

Assumption 1 implies that there exists a unique ∗  0 verifying (14). Re-

placing this value into equation (11) gives  ∗ = [∗ −  (∗) ∗] . Since
   (∗)  , there exists a unique  ∗  0. Replacing (∗  ∗) into equation
(10), we obtain:

∗ =  (∗  ∗) = ∗ +  (∗)  0 (33)

Equation (6) becomes

∗ =  (
∗  ∗) =  (

∗ +  (∗)  [∗ −  (∗) ∗] )  0

Proof of Proposition 6

Let

 ∗ ≡
Z ∞
0

− (∗  ∗)  =  (∗  ∗)
Z ∞
0

−  =
1


 (∗  ∗)

be the welfare function evaluated at the steady state. We find



 ∗
 ∗


=

∗

∗






∗
∗


+

 ∗

∗






 ∗
 ∗



Using (16) and (17), we obtain



 ∗
 ∗


=

∙
∗
+ (+  + ) 1−



+ (+  + ) 1−


+ ∗ (
∗)
¸


∗
∗



Proof of Proposition 7

Necessity In a three-dimensional dynamic system, we require at the bifurca-

tion value: 1 =  = −2 with no generic restriction on 3 (see Bosi and Ragot
(2011) or Kuznetsov (1998) among others). The characteristic polynomial of 
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is given by:  () = (− 1) (− 2) (− 3) = 3 − 2 +  − . Using

1 =  = −2, we find  = 23,  = 2,  = 3. Thus,  =  and   0.

Sufficiency In the case of a three-dimensional system, one eigenvalue is al-

ways real, the others two are either real or nonreal and conjugated. Let us show

that, if  =  and   0, these eigenvalues are nonreal with zero real part

and, hence, a Hopf bifurcation generically occurs.

We observe that  =  implies

123 = (12 + 13 + 23) (1 + 2 + 3)

or, equivalently,

(1 + 2)
£
23 + (1 + 2)3 + 12

¤
= 0 (34)

This equation holds if and only if 1 + 2 = 0 or 
2
3 + (1 + 2)3 + 12 = 0.

Solving this second-degree equation for 3, we find 3 = −1 or −2. Thus,
(34) holds if and only if 1+2 = 0 or 1+3 = 0 or 2+3 = 0. Without loss

of generality, let 1 + 2 = 0 with, generically, 3 6= 0 a real eigenvalue. Since
  0, we have also 1 = −2 6= 0. We obtain  = 3 6= 0 and  =  = 1
2 = −21  0. This is possible only if 1 is nonreal. If 1 is nonreal, 2 is

conjugated, and, since 1 = −2, they have a zero real part.
Proof of Proposition 8

Necessity In the real case, we obtain  = 123  0,  = 12 + 13 +

23  0 and  = 1 + 2 + 3  0.

Sufficiency We want to prove that, if   0 and   0, then 1 2 3 

0. Notice that   0 implies 1 2 3 6= 0.
  0 implies that at least one eigenvalue is negative. Let, without loss of

generality, 3  0. Since 3  0 and  = 123  0, we have 12  0. Thus,

there are two subcases: (1) 1 2  0, (2) 1 2  0. If 1 2  0,   0

implies 3  − (1 + 2) and, hence,

 = 12 + (1 + 2)3  12 − (1 + 2)
2
= −21 − 22 − 12  0

a contradiction. Then, 1 2  0.

References

[1] Andreoni J. and A. Levinson (2001). The simple analytics of the environ-

mental Kuznets curve. Journal of Public Economics 80, 269-286.

[2] Bosi S. and L. Ragot (2011). Introduction to discrete-time dynamics.

CLUEB, Bologna.

[3] Fernandez E., R. Pérez and J. Ruiz (2012). The environmental Kuznets

curve and equilibrium indeterminacy. Journal of Economic Dynamics &

Control 36, 1700-1717.

22



[4] Finkelstein A., E. Luttmer and M. Notowidigdo (2013). What good is

wealth without health? The effect of health on the marginal utility of

consumption, Journal of the European Economic Association 11, 221-258.

[5] Heal G. (1982). The use of common property resources. In Explorations

in Natural Resource Economics, The Johns Hopkins University Press for

Resources for the Future, Baltimore.

[6] Itaya J.-I. (2008). Can environmental taxation stimulate growth? The role

of indeterminacy in endogenous growth models with environmental exter-

nalities. Journal of Economic Dynamics & Control 32, 1156-1180.

[7] Kampa M. and E. Castanas (2008). Human health effects of air pollution.

Environmental Pollution 151, 362-367.

[8] Kijima M., K. Nishide and A. Ohyama (2010). Economic models for the

environmental Kuznets curve: A survey. Journal of Economic Dynamics &

Control 34, 1187-1201.

[9] Kuznetsov Y. (1998). Elements of Applied Bifurcation Theory. Springer,

Applied Mathematical Sciences, vol. 112.

[10] Managi S. (2006). Are there increasing returns to pollution abatement?

Empirical analytics of the Environmental Kuznets Curve in pesticides. Eco-

logical Economics 58, 617-636.

[11] Managi S. and S. Kaneko (2009). Environmental performance and returns

to pollution abatement in China. Ecological Economics 68, 1643-1651.

[12] Michel P. and G. Rotillon (1995). Disutility of pollution and endogenous

growth. Environmental and Resource Economics 6, 279-300.

[13] Sinn H-W. (2008). Public policies against global warming: a supply side

approach. International Tax and Public Finance 15, 360-394.

23


