Equilibrium in International Asset Market

Patrice Fontaine, Cuong Le Van

December 16, 2009

1 The Model

Let us consider a two-period economy with $L + 1$ countries and K assets. We suppose there exists one consumption good which may be traded between the $L + 1$ countries. In each country there is only one consumer. In period 0, agent i, ($i = 0, \ldots, L$) purchases assets and consumes in period 1. There are S states of nature in period 1. If state s occurs, in period 1, the consumer in country i will consume c_i^s:

$$c_i^s = \omega_i^s + \sum_{k=1}^{K} R_i^k(s) \theta_i^k$$

where θ_i^k is the portfolio she purchased in period 0, ω_i^s is the initial endowment of consumption good, $R_i^k(s) \geq 0$ is the return of asset k in country i. The initial endowment ω_i^s and the return $R_i^k(s)$ are valued in currency of country i.

We make the following assumptions:

A1: For any i, any s, $\sum_{k=1}^{K} R_i^k(s) > 0$

A2: For any i, any k, $\sum_{s=1}^{S} R_i^k(s) > 0$

These assumptions are not very stringent. If **A1** is not satisfied for some i, some s, in this case, country i will not make any exchange on the asset market in state s. If **A2** is not satisfied for some i, some k, country i will never purchase asset k.

P: For every state s, every country i, $\pi_i^s > 0$, where π_i^s is the belief probability of agent i that state s occurs in period 1.

For any state s, we take the consumption price of country 0 as numeraire. Hence, if τ_i^s is the exchange rate in state s between countries i and 0, the consumption of agent i valued in currency 0 is

$$\tau_i^s c_i^s = \tau_i^s \omega_i^s + \sum_{k=1}^{K} \tau_i^s R_i^k(s) \theta_i^k$$
2 The consumption model

We first consider the two-period consumption model. Let \((\pi^i_s) = 0\) in the \(S\)-unit simplex be the belief of agent \(i\). If \(q\) is the asset price, agent \(i\) will solve:

\[
(P) \quad \max \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s) \theta^i_k)
\]

\[\forall s, \quad \omega^i_s + \sum_{k=1}^{K} R^i_k(s) \theta^i_k \geq 0\]

\[\sum_{k=1}^{K} q^i_k \theta^i_k \leq 0.\]

We suppose that for any \(i\), agent \(i\) has no initial endowment for the assets. We also assume

\[U1:\] The utility function \(u^i\) is concave, strictly increasing, differentiable in \(\mathbb{R}^{++}\) for any \(i\).

Definition 1

An equilibrium is a list \([((\theta^{x^i}, (c^{x^i}; \tau^{x^i}))_{s=1,..,S})_{i=0,..,L}, q^x \neq 0]\) such that

1. \(\forall i, \theta^{x^i}\) will solve problem \((P)\) given \(q^x\)
2. \(\sum_{i=0}^{L} \theta^{x^i} = 0\)
3. \(\sum_{i=0}^{L} \tau^{x^i} \omega^i = \sum_{i=0}^{L} \tau^i \omega^i_s\).

Relation (2) is the market clearing on the asset market while relation (3) is the balance on the consumption good market valued in currency 0.

Remark

By definition, \(\tau^{x^i}_s = 1\) for any \(s\).

It is obvious that the consumption set \(X^i\) is

\[
X^i = \left\{ \theta \in \mathbb{R}^K : \text{for any } s, \quad \omega^i_s + \sum_{k=1}^{K} R^i_k(s) \theta^i_k \geq 0 \right\}
\]

Definition 2

\(w\) is a useful assets purchase for agent \(i\) if for any \(\lambda \geq 0\), for any \(\theta \in X^i\), one has:

\[(a) \quad \omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta_k + \lambda w_k) \geq 0\]

\[(b) \quad \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta_k + \lambda w_k) \geq \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)\theta_k)\]

Let \(W^i\) denote the set of useful vectors for agent \(i\).
Proposition 1 We have
\[W^i = \left\{ w \in \mathbb{R}^K : \sum_{k=1}^{K} R_k^i(s) w_k \geq 0, \ \forall s \right\} \]

Proof: Consider (a) in the previous definition. Divide the LHS by \(\lambda \) and let it go to infinity. We obtain
\[\sum_{k=1}^{K} R_k^i(s) w_k \geq 0. \]
Conversely, assume \(\forall s, \sum_{k=1}^{K} R_k^i(s) w_k \geq 0. \) Then obviously, for any \(\theta \in X^i, \) any \(\lambda \geq 0, \) one has (a). From the increasingness of \(u^i, \) we have
\[S \sum_{s=1}^{S} \pi_s^i u^i(\omega_s^i) + \sum_{k=1}^{K} R_k^i(s)(\theta_k + \lambda w_k) \geq \sum_{s=1}^{S} \pi_s^i u^i(\omega_s^i) + \sum_{k=1}^{K} R_k^i(s)\theta_k \]
We obtain (b). ■

Definition 3
A vector \(q \) is a no-arbitrage price for agent \(i \) if \(q \cdot w > 0, \) for all \(w \in W^i. \)
Let \(S^i \) denote the cone of no-arbitrage prices for agent \(i. \) Then, obviously,
\[S^i = -\text{int}(W^i)^0. \]
In finance, there is another concept of no-arbitrage. We call it NA1. A vector \(q \) is a NA1 price, or more simply NA1, if for any country \(i, \) for any portfolio \(\theta \) which satisfies \(R_k^i(s) \cdot \theta \geq 0, \ \forall s, \) and \(R_k^i(s') \cdot \theta > 0 \) for some \(s', \) then we have \(q \cdot \theta > 0. \)
We introduce an assumption on the exchange rates:
\((E) \) There exist \([(\tau_{s_i}^i > 0); i = 1, \ldots, L; s = 1, \ldots, S], \tau_s^0 = 1; s = 1, \ldots, S \) such that
\[\forall i \neq 0, \forall s, \forall k, \ \tau_{s_i}^i R_k^i(s) = R_k^0(s). \]

Proposition 2 Under \((E), \) a vector \(q \) is NA1 iff, \(\forall s, \ R_k^0(s) \cdot \theta \geq 0 \) and \(R_k^0(s') \cdot \theta > 0 \) for some \(s', \) then \(q \cdot \theta > 0. \)
Proof: Obvious. ■

Proposition 3 Assume \(A1, \ A2, \ P, \ U1 \) and \(\omega_s^i > 0, \forall s, \ \forall i. \) Assume moreover the no-arbitrage condition
\[(\text{NA}) \cap \bigcap_{i=0}^{L} S^i \neq \emptyset \]
Then there exist \([(\theta^i)_{i=0,...,L}; q^* >> 0] \) such that
(a) \(\forall i, \theta^i \) solves problem \((P) \)
(b) \(\sum_{i=0}^{L} \theta^i = 0 \)
Proof: The proof may be found in several papers, e.g., Werner [11], Page and Wooders [8], Dana, Le Van, Magnien [5]. The strict positivity of q^* comes from the strict increasingness of the u^i and assumptions $A1, A2$.

We now introduce an assumption which ensures the non-emptiness of S^i.

A3: For any i, there exists no non-null $(\theta_1, \ldots, \theta_K)$ which satisfies

$$\forall s, \sum_{k=1}^{K} R^i_k(s) \theta_k = 0$$

This assumption means that, for any country i, the K assets are not redundant. With this assumption, for any i, W^i contains no line, and S^i is non-empty.

Proposition 4 Assume A3. Then q is NA1 iff it is a no-arbitrage price.

Proof: Let q be no-arbitrage. Given i, let w satisfy $R^i_k(s) \cdot w \geq 0$, $\forall s$ and $R^i_k(s') \cdot w > 0$ for some s'. In this case $w \in W^i \setminus \{0\}$. Hence $q \cdot w > 0$. That means q is NA1.

Conversely, let q be NA1. Given i, let $w \in W^i \setminus \{0\}$. then we have $R^i_k(s) \cdot w \geq 0$, $\forall s$ and $R^i_k(s') \cdot w > 0$ for some s'. If not, $R^i_k(s) \cdot w = 0$, $\forall s$ and from A3, $w = 0$: a contradiction. Since q is NA1, we have $q \cdot w > 0$, i.e. q is no-arbitrage.

Proposition 5 (a) If q^* is an equilibrium price then it is NA1.

(b) Assume A3. If q^* is an equilibrium price then it is both NA1 and no-arbitrage.

Proof: (a) Given i, let ψ satisfy $R^i_k(s) \cdot \psi \geq 0$, $\forall s$ and $R^i_k(s') \cdot \psi > 0$ for some s'. Let θ^{s^i} denote the associated equilibrium portfolio. Since u^i is strictly increasing, and $\pi^i_s > 0$, $\forall s$, we have

$$\sum_{s=1}^{S} \pi^i_s u^i(\omega^i + \sum_{k=1}^{K} R^i_k(s)(\theta^{s^i}_k + \psi_k)) > \sum_{s=1}^{S} \pi^i_s u^i(\omega^i + \sum_{k=1}^{K} R^i_k(s)\theta^{s^i}_k)$$

That implies $q \cdot \psi > 0$.

(b) The result follows from (a) and Proposition 4.

Proposition 6 Assume $A1, A2, A3, P, U1$ and E. Assume that for any i, $\omega^i_s > 0, \forall s$. Then there exist $[(\theta^{s^i})_{i=0,\ldots,L}; q^* \neq 0]$ such that $[(\theta^{s^i})_{i=0,\ldots,L}; (\tau^{s^i})_{i,s}; q^* \neq 0]$ is an equilibrium.
Proof: Under (E), the set W^i

\[W^i = \left\{ w \in \mathbb{R}^K : \sum_{k=1}^K R^i_k(s) w_k \geq 0, \forall s \right\} \]

is independent of i and hence S^i is the same for all i. We will show that S^0 is non-empty. Indeed, let $w \in W^0 \setminus \{0\}$. Then there exists s' such that $\sum_{k=1}^K R^0_k(s') w_k > 0$. If not, we have: $\forall s, \sum_{k=1}^K R^0_k(s) w_k = 0$. From A3, $w = 0$ which is a contradiction. Now, let $q \in \mathbb{R}^K$ be defined by $\forall k, q_k = \sum_{s=1}^S R^0_k(s)$. Then $q \cdot w > 0$ for any $w \in W^0 \setminus \{0\}$. That means $q \in S^0$.

The No-Arbitrage condition (NA) is therefore satisfied.

From Proposition 3, there exist $[(\theta^* i)_{i=0,\ldots,L}; q^* \neq 0]$ such that

(a) $\forall i, \theta^* i$ solves problem (P)

(b) $\sum_{i=0}^L \theta^* i = 0$.

Condition (E) implies

(c) $\sum_{i=0}^L \tau^* i c^* = \sum_{i=0}^L \omega^* i$

where

$c^* = \omega^* i + \sum_{k=1}^K R^i_k(s) \theta^* i$.

We end the proof.

3 The wealth model

We drop the constraints

$\forall s, \omega^* i + \sum_{k=1}^K R^i_k(s) \theta^* i \geq 0$

We replace U1 by

U1bis: For every i, the utility function is is concave, strictly increasing, differentiable in \mathbb{R}.
Let $a^i = u^i(+\infty)$, $b^i = u^i(-\infty)$, $i = 0, \ldots, L$. Let q be the asset price. Country i will solve:

$$
(Q) \quad \max \sum_{s=1}^{S} \pi_s^i u^i(\omega_s^i + \sum_{k=1}^{K} R_k^i(s) \theta_k^i) + \sum_{k=1}^{K} q_k \theta_k^i \leq 0.
$$

We suppose, as in the two-period consumption model, that for any i, agent i has no initial endowment for the assets.

Definition 4

An equilibrium is a list $[(\theta_s^i, (c_s^i, \tau_s^i))_{s=1,\ldots,S})_{i=0,\ldots,L}, q^* \neq 0]$ such that

1. $\forall i$, θ_s^i will solve problem (Q) given q^*
2. $\sum_{i=0}^{L} \theta_s^i = 0$
3. $\sum_{i=0}^{L} \tau_s^i = \sum_{i=0}^{L} \tau_s^i \omega_s^i$.

Relation (2) is the market clearing on the asset market while relation (3) is the balance on the consumption good market valued in currency 0.

Remark By definition, as before, $\tau_s^0 = 1$ for any s.

It is obvious that the consumption set X^i is now \mathbb{R}^K.

In order to prove existence of equilibrium, we will introduce and characterize the useful vectors and the no-arbitrage prices.

Definition 5

w is a useful assets purchase for agent i if for any $\lambda \geq 0$, for any $\theta \in X^i$, one has:

$$
\sum_{s=1}^{S} \pi_s^i u^i(\omega_s^i + \sum_{k=1}^{K} R_k^i(s) \theta_k^i + \lambda w^i_k) \geq \sum_{s=1}^{S} \pi_s^i u^i(\omega_s^i + \sum_{k=1}^{K} R_k^i(s) \theta_k^i) \quad \forall \lambda \geq 0.
$$

From Rockafellar [10], w is useful for agent i, if, and only if, there exists $\theta \in X^i$ such that

$$
\sum_{s=1}^{S} \pi_s^i u^i(\omega_s^i + \sum_{k=1}^{K} R_k^i(s) \theta_k^i + \lambda w^i_k) \geq \sum_{s=1}^{S} \pi_s^i u^i(\omega_s^i + \sum_{k=1}^{K} R_k^i(s) \theta_k^i), \forall \lambda \geq 0.
$$

Let W^i denote the set of useful vectors for agent i. We will characterize it.

Proposition 7 A vector w is useful for i iff:

$$
\forall \theta \in \mathbb{R}^K, \sum_{k'=1}^{K} w_{k'} \sum_{s=1}^{S} \pi_s^i u^i(\omega_s^i + \sum_{k=1}^{K} R_k^i(s) \theta_k^i) R_{k'}^i(s) \geq 0 \quad (1)
$$

Proof: It is very similar to those given in Dana and Le Van [3], [4] by using the concavity and the differentiability of the u^i. ■
We can have another characterization of W^i. The proof of the following
proposition is adapted from Dana and Le Van [4].

Proposition 8 Let $w \in X^i$ and let $\zeta_s = \sum R_i^k(s)w_k, \ \forall s$, $S^+ = \{ s : \zeta_s > 0 \}$,
$S^- = \{ s : \zeta_s < 0 \}$. The vector w is useful for i iff

$$a^i \sum_{s \in S^+} \pi^i_s \zeta_s + b^i \sum_{s \in S^-} \pi^i_s \zeta_s \geq 0 \quad (2)$$

Proof: From Proposition 7, w is useful iff for any $\theta \in \mathbb{R}^K$, we have

$$\sum_{s=1}^S \pi^i_s u^i \left(\omega^i_s + \sum_{k=1}^K R^i_k(s)(\theta_k + \lambda w_k) \right) \geq \sum_{s=1}^S \pi^i_s u^i (\omega^i_s + \sum_{k=1}^K R^i_k(s)\theta_k), \ \forall \lambda \geq 0.$$

Take $\theta = 0$. We then have

$$\sum_{s=1}^S \pi^i_s u^i (\omega^i_s + \lambda \zeta_s) \geq \sum_{s=1}^S \pi^i_s u^i (\omega^i_s), \ \forall \lambda \geq 0.$$

Thus, ζ is useful for the function $(c_s)_s \rightarrow \sum \pi^i_s u^i(c_s)$. We then have for any $(c_s)_s$

$$0 \geq \sum_{s=1}^S \pi^i_s u^i(c_s) - \sum_{s=1}^S \pi^i_s u^i(c_s + \zeta_s) \geq -\sum_{s=1}^S \pi^i_s u^i(c_s)\zeta_s.$$

This implies $\sum_{s=1}^S \pi^i_s u^i(c_s)\zeta_s \geq 0$. For any $s \in S^+$ let c_s go to $+\infty$, and for $s \in S^-$, let c_s go $-\infty$. We then obtain (2).

The converse is obvious since u'' is non-increasing. ■

Corollary 1 If $a^i = 0$ or $b^i = +\infty$ then $W^i = \{ w \in \mathbb{R}^K : \sum_{k=1}^K R^i_k(s)w_k \geq 0, \ \forall s \}$

Proof: It is obvious. ■

As before, we define no-arbitrage prices.

Definition 6
A vector q is a no-arbitrage price for agent i if $q \cdot w > 0$, for all $w \in W^i$. A vector q is called no-arbitrage price if it is for every i.
Let S^i denote the cone of no-arbitrage prices for agent i. Then, obviously, $S^i = -\text{int}(W^i)^0$.
In finance, there is another concept of no-arbitrage. We call it NA1. A vector q is a NA1 price, or more simply NA1, if for any country i, for any portfolio θ which satisfies $R^i_k(s) \cdot \theta \geq 0, \ \forall s$, and $R^i_k(s') \cdot \theta > 0$ for some s', then we have $q \cdot \theta > 0$.

7
Proposition 9 (a) If \(q \) is no-arbitrage, then it is NA1. If \(q^* \) is an equilibrium price, then it is NA1.
(b) Assume A3. If \(u^i \) is strictly concave then

\[
\sum_{s} \pi^i_s u^i(\omega^i_s + \sum_{k} R^i_k(s)(\theta^i_k + w_k)) > \sum_{s} \pi^i_s u^i(\omega^i_s + \sum_{k} R^i_k(s)\theta^i_k)
\]

for any \(\theta \), any \(w \in \mathcal{W}^i \setminus \{0\} \). And any equilibrium price is no-arbitrage.

Proof: (a)Let \(q \) be no-arbitrage. Given \(i \), let \(w \) satisfy \(R^i_k(s) \cdot w \geq 0 \), \(\forall s \) and \(R^i_k(s') \cdot w > 0 \) for some \(s' \). In this case \(w \in \mathcal{W}^i \setminus \{0\} \). Hence \(q \cdot w > 0 \). That means \(q \) is NA1.
Given \(i \), let \(\psi \) satisfy \(R^i_k(s) \cdot \psi \geq 0 \), \(\forall s \) and \(R^i_k(s') \cdot \psi > 0 \) for some \(s' \). Let \(\theta^w \) denote the associated equilibrium portfolio. Since \(u^i \) is strictly increasing, and \(\pi^i_s > 0 \), \(\forall s \), we have

\[
\sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta^i_k + \psi_k)) > \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)\theta^i_k)
\]

That implies \(q \cdot \psi > 0 \).

(b) Let \(w \in \mathcal{W}^i \setminus \{0\} \). Then from A3, \(\sum_{s} R^i_k(s)w_k \neq 0 \). If

\[
\sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta^i_k + w_k)) = \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)\theta^i_k)
\]

then

\[
\sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta^i_k + \frac{1}{2}w_k)) > \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta^i_k + w_k))
\]

which is a contradiction since

\[
\sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta^i_k + w_k)) \geq \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta^i_k + \frac{1}{2}w_k))
\]

Let \([\theta^w, q^*] \) be an equilibrium. Then for any \(w \in \mathcal{W}^i \setminus \{0\} \) we have

\[
\sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)(\theta^i_k + w_k)) > \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s)\theta^i_k)
\]

This implies \(q^* \cdot w > 0 \). ■

We have the first result for existence of equilibrium.

Proposition 10 Assume A1, A2, A3, P, U1bis, condition \((\mathcal{E}) \), and for any \(i \), either \(a^i = 0 \) or \(b^i = +\infty \). Then there exists an equilibrium.
Proof: In this case, for any i, $W^i = \{ w \in \mathbb{R}^K : \sum_k R^i_k(s)w_k \geq 0, \forall s \}$. The proof is the same as for Proposition 6.

More generally,

Proposition 11 Assume $A1, A2, A3, P, U1bis, \text{condition (E)}$, and for any i, $a^i < u^i(\omega^i_s + \sum_{k=1}^K R^i_k(s)\theta^i_k) < b^i, \forall \theta$.

Then there exists an equilibrium iff there exists a no-arbitrage price, i.e. there exist $[(\theta^i, \lambda^i > 0)_{i=0,...,L}]$ such that

$$\forall i, \forall j, \forall k', \lambda^i \sum_s \pi^i_s u^i(\omega^i_s + \sum_k R^i_k(s)\theta^i_k) R^i_{k'} = \lambda^j \sum_s \pi^j_s u^j(\omega^j_s + \sum_k R^j_k(s)\theta^j_k) R^j_{k'}$$

Proof: (1) Assume there exist $[(\theta^i, \lambda^i > 0)_{i=0,...,L}]$ such that

$$\forall i, \forall j, \forall k', \lambda^i \sum_s \pi^i_s u^i(\omega^i_s + \sum_k R^i_k(s)\theta^i_k) R^i_{k'} = \lambda^j \sum_s \pi^j_s u^j(\omega^j_s + \sum_k R^j_k(s)\theta^j_k) R^j_{k'}$$

Let

$$q_{k'} = \lambda^i \sum_s \pi^i_s u^i(\omega^i_s + \sum_k R^i_k(s)\theta^i_k) R^i_{k'}, \forall k'$$

We will show that q is no-arbitrage. Indeed, let $w \in W^i \setminus \{0\}$. Let $\zeta_s = \sum_k R^i_k(s)w_k, \forall s$. We will show

$$q \cdot w = \lambda^i \sum_s \pi^i_s u^i(\omega^i_s + \sum_k R^i_k(s)\theta^i_k)\zeta_s > 0$$

From $A3$, $\zeta \neq 0$. Let $S^+ = \{ s : \zeta_s > 0 \}$, $S^- = \{ s : \zeta_s < 0 \}$. We have

$$\lambda^i \sum_s \pi^i_s u^i(\omega^i_s + \sum_k R^i_k(s)\theta^i_k)\zeta_s > \lambda^i \left(a^i \sum_{s \in S^+} \pi^i_s \zeta_s + b^i \sum_{s \in S^-} \pi^i_s \zeta_s \geq 0 \right)$$

That means q is no-arbitrage for any agent i. Under $A1, A2, P, U1bis$, if there exists a no-arbitrage price then (see e.g. Werner [11], Page and Wooders [8], Dana, Le Van, Magnien [5]) there exist $[(\theta^{si})_{i=0,...,L}; q^* > 0]$ such that

(a) $\forall i$, θ^{si} solves problem (Q)

(b) $\sum_{i=0}^L \theta^{si} = 0$

Condition (E) implies

$$\sum_{i=0}^L \tau^{si}_s c^{si}_s = \sum_{i=0}^L \tau^{si}_s \omega^i_s$$

where

$$c^{si}_s = \omega^i_s + \sum_{k=1}^K R^i_k(s)\theta^{si}_k.$$
and
\[\forall i, a^i < u'' \left(\omega^i + \sum_{k=1}^{K} R^i_k(s)\theta^i_k \right) < b^i \]

One can show as just above that \(q^* \in \cap_i S^i \), i.e. a no-arbitrage price. ■

Comments

1. Condition \((E)\) means that for any portfolio \(\theta_1, \ldots, \theta_k \), the return it yields will be the same for any country \(i \) if it is valued in currency 0. This condition is very important. We give an example where it is not satisfied and we have no equilibrium.

We consider an economy with two countries, 0 and 1, two states of nature and two assets. We assume
\[
R^0 = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}, \quad R^1 = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}
\]

In this economy, condition \((E)\) is not satisfied. We have
\[
W^0 = \{ (\theta_1, \theta_2) : \theta_1 \geq 0, \theta_1 + 2\theta_2 \geq 0 \}
\]
\[
W^1 = \{ (\theta_1, \theta_2) : \theta_2 \geq 0, 2\theta_1 + \theta_2 \geq 0 \}
\]
\[
S^0 = \{ (p_1, p_2) : p_1 > 0, p_2 > 0, 2p_1 - p_2 > 0 \}
\]
\[
S^1 = \{ (p_1, p_2) : p_1 > 0, p_2 > 0, 2p_2 - p_1 > 0 \}
\]

One can check that \((1, 1) \in S^0 \cap S^1\). From Proposition 3, there exist \(\{(\theta^* i)_i=0,1; (q^*(1), q^*(2))\}\) such that
(a) \(\forall i, \theta^* i \) solves problem \((P)\)
(b) \(\sum_{i=0}^{2} \theta^* i = 0 \)
(c) \((q^*(1), q^*(2)) >> 0 \)

If there exists an equilibrium then
\[
\tau^*_1 = -\frac{R^0(1)\theta^*_1 + R^0(1)\theta^*_0}{R^1(1)\theta^*_0 + R^1(2)\theta^*_1}
\]

We obtain
\[
\tau^*_1 = \frac{\theta^*_1}{\theta^*_2} = \frac{-q^*_2}{q^*_1} < 0
\]

since \(q^*_1 \theta^*_1 + q^*_2 \theta^*_2 = 0 \): a contradiction.

2. Consider condition \((E)\). We assume that for any country \(i \), the asset \(i \) is riskless. The returns \(R^i(s) \) will not depend on \(s \) and are assumed to be constant. Condition \((E)\) may be written as
\[
\log \tau^*_s = \log R^0_i(s) - \log R^i_i
\]
Let \(E^i = \log R^i \). Assume that the returns are given, as in Fontaine [6], relation (5)

\[
\log R^0_i(s) = E^0_i(s) + \sum_{m=1}^{M} b^0_{im} \tilde{f}_m(s)
\]

where \(\tilde{f}_m \) are the common factors, we then obtain

\[
\log \tau^{*i} = E^0_i(s) - E^i_i + \sum_{m=1}^{M} b^0_{im} \tilde{f}_m(s)
\]

which is relation (9) in Fontaine [6].

More generally, assume that

\[
\log R^j_k(s) = E^j_k(s) + \sum_{m=1}^{M} b^j_{km} \tilde{f}_m(s)
\]

Let \(r^0_{jk}(s) = \log(\tau^{*j} R^j_k(s)) \). \(r^0_{jk} \) is the return of asset \(k \) in country \(j \) valued in currency 0. We get:

\[
r^0_{jk}(s) = E^j_k(s) + \sum_{m=1}^{M} b^j_{km} \tilde{f}_m(s) + E^0_i(s) - E^i_i + \sum_{m=1}^{M} b^0_{im} \tilde{f}_m(s)
\]

which corresponds to relation (11) in Fontaine [6]. If Relation 4 holds for any country \(j \), for any asset \(k \), we then have an equilibrium in the two-period consumption model. However, this condition is not sufficient, in general, for the wealth model.

3. An equilibrium price is given by

\[
\forall i, \forall k, q^*_k = \lambda^i \sum_{s=1}^{S} \pi^i_s u^i(\omega^i_s + \sum_{k=1}^{K} R^i_k(s) \theta^i_k) R^i_k(s)
\]

\[
= \lambda^i \sum_{s=1}^{S} \pi^i_s u^i \left(\omega^i_s + \sum_{k=1}^{K} \frac{R^0_k(s) \theta^i_k}{\tau^i_s} \right) \frac{R^0_k(s)}{\tau^i_s}
\]

In particular, if the market is complete and non-redundant, i.e. the matrix \(R^0_k(s) \) is square and invertible, we have:

\[
\forall i, \lambda^i \pi^i_s u^i \left(\omega^i_s + \sum_{k=1}^{K} \frac{R^0_k(s) \theta^i_k}{\tau^i_s} \right) \frac{1}{\tau^i_s} = \lambda^0 \pi^0_s u^0(\omega^0_s + \sum_{k=1}^{K} R^0_k(s) \theta^0_k)
\]

The equilibrium price \(q^* \) depends on the expectations, the returns, the initial endowments and the equilibrium portfolio in country 0.

Observe that when the countries are risk-neutral \((u^i(x) = x) \) then an equilibrium exists if and only if \(\forall s, \forall i, \pi^i_s = \frac{\omega^i_s}{\sum_{\sigma} \pi^\sigma_s} \).
4 On the Purchasing Power Parity (PPP)

Let \(q^* \) be an equilibrium price. We know that \(q^* \) is NA1. From Dana and Jeanblanc-Piqué [2], there exists \((\beta_s^i > 0; i = 0, \ldots, L; s = 1, \ldots, S) \) such that \(\forall i, q^* = \sum_s \beta_s^i R^i(s) \). Define \(p^*_s = \beta_s^i, s = 1, \ldots, S; i = 0, \ldots, L \). We have

\[
\forall i, \quad q^*_k = \sum_s p^*_s R^i_k(s) = \sum_s \frac{p^*_s}{\tau^*_s} R^0_k(s) = \sum_s p^*_s R^0_k(s) \tag{5}
\]

Let

\[
Z = \{ z \in \mathbb{R}^S : \sum_s z_s R^0_k(s) = 0, \forall k \}
\]

\(Z = \{ 0 \} \) if the market is complete. From (5), we get

\[
\forall i, \quad p^*_s = \tau^*_s (p^*_s + z^i)
\]

with \((z^i) \in Z \). Define

\[
\forall i \neq 0, \forall s, \quad \tilde{p}^*_s = p^*_s - \tau^*_s z^i = \tau^*_s p^*_s + \tau^*_s z^i \tag{6}
\]

\[
\tilde{p}^*_0 = p^*_0 \tag{7}
\]

We claim that \((\tilde{p}^*_s) \) is a prices system for the consumption good. Indeed, let

\[
c^*_s = \omega^i + \sum_k R^i_k(s) \theta^i_k, \forall i, \forall s
\]

We have

\[
\sum_s \tilde{p}^*_s c^*_s = \sum_s \tilde{p}^*_s \omega^i + \sum_k q^*_k \theta^i_k = \sum_s \tilde{p}^*_s \omega^i
\]

since \(\sum_k q^*_k \theta^i_k = 0 \).

Observe that, for any portfolio of country \(i \), \(\theta^i \),

\[
q^* \cdot \theta^i = \sum_s \tilde{p}^*_s (\sum_k R^i_k(s) \theta^i_k)
\]

Now, let

\[
\sum_s \pi^i u^i(\omega^i + \sum_k R^i_k(s) \theta^i_k) > \sum_s \pi^i u^i(\omega^i + \sum_k R^i_k(s) \theta^i_k)
\]

This implies \(q^* \cdot \theta^i > q^* \cdot \theta^i \) or equivalently

\[
\sum_s \tilde{p}^*_s (\sum_k R^i_k(s) \theta^i_k) > \sum_s \tilde{p}^*_s (\sum_k R^0_k(s) \theta^i_k)
\]

And if we define

\[
c^*_s = \omega^i + \sum_k R^i_k(s) \theta^i_k, \forall i, \forall s
\]
\[c^i_s = \omega^i_s + \sum_k R^i_k(s)\theta^i_k, \forall i, \forall s \]

we obtain
\[\sum_s p^s_i c^i_s > \sum_s p^s_i c^i_s \]

That means \([c^i_s; (\tilde{p}^s_i); i = 0, \ldots, L; s = 1, \ldots, S]\) is an equilibrium for the model where

(a) each agent \(i\) solves:

\[\max \sum_s \pi^i_s u^i(c^i_s) \]

under the constraints:

\[c^i \in X^i = \{ c \in \mathbb{R}^S \mid \exists \theta \in \mathbb{R}^K, c_s = \omega^i_s + \sum_k R^i_k(\theta_k) \cap \mathbb{R}_+^S \text{ for the consumption model} \]

\[c^i \in X^i = \{ c \in \mathbb{R}^S \mid \exists \theta \in \mathbb{R}^K, c_s = \omega^i_s + \sum_k R^i_k(\theta_k) \} \text{ for the wealth model} \]

and the budget constraint
\[\sum_s p^s_i c^i_s \leq \sum_s p^s_i \omega^i_s \]

and

(b) \(\forall s, \sum_i \tau^i_s c^i_s = \sum_i \tau^i_s \omega^i_s\)

Conversely, under A3, one can check that if \([c^*_s; (\tilde{p}^*_s); i = 0, \ldots, L; s = 1, \ldots, S]\) is an equilibrium for the model given just above with \(\tilde{p}^*_s = \tau^*_s \tilde{p}^0_s\), \forall i, \forall s \text{ then } [\theta^*_s, q^*] \text{ is an equilibrium on the international asset market where} \]

\[c^*_s = \omega^i_s + \sum_k R^i_k(s)\theta^*_k, \forall i, \forall s \]

and

\[q^* = \sum_s \tilde{p}^*_s R^0(s). \]

Indeed, let
\[\sum_s \pi^i_s u^i(\omega^i_s + \sum_k R^i_k(s)\theta^i_k) > \sum_s \pi^i_s u^i(\omega^i_s + \sum_k R^i_k(s)\theta^i_k) \]

That implies
\[\sum_s p^s_i (\omega^i_s + \sum_k R^i_k(s)\theta^i_k) > \sum_s p^s_i (\omega^i_s + \sum_k R^i_k(s)\theta^i_k) \]

or equivalently
\[\sum_k \sum_s p^s_i R^i_k(s)\theta^i_k > \sum_k \sum_s p^s_i R^i_k(s)\theta^i_k \]
i.e.
\[q^* \cdot \theta^i > q^* \cdot \theta^{*i} \]

It remains to show that the asset market clears. Since
\[\sum_i \tau^s_i c^s_i = \sum_i \tau^s_i \omega^i_s \]
we have
\[\sum_i \sum_k \tau^s_i R^i_k(s) \theta^{*i}_k = 0 \]
or equivalently
\[\sum_k R^0_k(s) (\sum_i \theta^{*i}_k) = 0 \]

Assumption A3 implies \(\sum_i \theta^{*i}_k = 0, \forall k. \)

We have proven

Proposition 12 Let \([\theta^{*i}, q^*] \) be an equilibrium on the international asset market and let
\[c^s_i = \omega^i_s + \sum_k R^i_k(s) \theta^{*i}_k, \forall i, \forall s \]

Then there exists a price system \((\tilde{p}^{*i}_s)_{i,s}\) such that \([(c^s_i), (\tilde{p}^{*i}_s)]\) is an equilibrium for the model where

(a) each agent \(i \) solves:

\[\max \sum_s \pi^i_s u^i(c^s_i) \]

under the constraints:

\[c^i \in X^i = \{ c \in \mathbb{R}^S \mid \exists \theta \in \mathbb{R}^K, c_s = \omega^i_s + \sum_k R^i_k(s) \theta_k \} \cap \mathbb{R}^S_+ \] for the consumption model
\[c^i \in X^i = \{ c \in \mathbb{R}^S \mid \exists \theta \in \mathbb{R}^K, c_s = \omega^i_s + \sum_k R^i_k(s) \theta_k \} \] for the wealth model

and the budget constraint
\[\sum_s p^{*i}_s c^i_s \leq \sum_s p^{*i}_s \omega^i_s \]

and
\[\forall s, \sum_i \tau^{s_i} c^i_s = \sum_i \tau^{s_i} \omega^i_s \]

Moreover the prices system \((\tilde{p}^{*i}_s)_{i,s}\) satisfies the PPP, i.e., \(\forall i, \forall s, \tilde{p}^{*i}_s = \frac{\tau^{s_i} \tilde{p}^{0s}}{\tau^{s_i}} \)
Conversely, under A3, if \([(c_s^i); (\tilde{p}_s^i); i = 0, \ldots, L; s = 1, \ldots, S] \) is an equilibrium for the model given just above with \(\tilde{p}_s^i = \tau_s^i \tilde{p}_s^0 \), \(\forall i, \forall s \) then \([\theta^i, q^*]\) is an equilibrium on the international asset market where
\[
c_s^i = \omega_s^i + \sum_k R_k(s)\theta^i_k, \forall i, \forall s
\]
and
\[
q^* = \sum_s \tilde{p}_s^0 R(s).
\]

References

